Mechanistic and structural insights into the proteolytic activation of Vibrio cholera MARTX toxin
نویسندگان
چکیده
MARTX toxins modulate the virulence of a number of Gram-negative Vibrio species. This family of toxins is defined by the presence of a cysteine protease domain (CPD), which proteolytically activates the Vibrio cholerae MARTX toxin. Although recent structural studies of the CPD have uncovered a new allosteric activation mechanism, the mechanism of CPD substrate recognition or toxin processing is unknown. Here we show that interdomain cleavage of MARTXVc enhances effector domain function. We also identify the first small-molecule inhibitors of this protease domain and present the 2.35-A structure of the CPD bound to one of these inhibitors. This structure, coupled with biochemical and mutational studies of the toxin, reveals the molecular basis of CPD substrate specificity and underscores the evolutionary relationship between the CPD and the clan CD caspase proteases. These studies are likely to prove valuable for devising new antitoxin strategies for a number of bacterial pathogens.
منابع مشابه
Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin
MARTX toxins modulate the virulence of a number of Gram-negative Vibrio species. This family of toxins is defined by the presence of a cysteine protease domain (CPD), which proteolytically activates the Vibrio cholerae MARTX toxin. Although recent structural studies of the CPD have uncovered a new allosteric activation mechanism, the mechanism of CPD substrate recognition or toxin processing is...
متن کاملThe Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold.
A Rho GTPase inactivation domain (RID) has been discovered in the multifunctional, autoprocessing RTX toxin RtxA from Vibrio cholerae. The RID domain causes actin depolymerization and rounding of host cells through inactivation of the small Rho GTPases Rho, Rac, and Cdc42. With only a few toxin proteins containing RID domains in the current sequence database, the structure and molecular mechani...
متن کاملExpression of Recombinant Protein B Subunit Pili from Vibrio Cholera
Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...
متن کاملCapsaicin inhibitory effects on Vibrio cholerae toxin genes expression
Objective: Cholera is an acute secretory diarrhea caused by the Gram-negative bacterium, Vibrio cholerae mostly through production of cholera toxin (CT) and zonula occludens toxin (Zot).<span style="fon...
متن کاملAnalysis of Vibrio cholerae Genome Sequences Reveals Unique rtxA Variants in Environmental Strains and an rtxA-Null Mutation in Recent Altered El Tor Isolates
UNLABELLED Vibrio cholerae genome sequences were analyzed for variation in the rtxA gene that encodes the multifunctional autoprocessing RTX (MARTX) toxin. To accommodate genomic analysis, a discrepancy in the annotated rtxA start site was resolved experimentally. The correct start site is an ATG downstream from rtxC resulting in a gene of 13,638 bp and deduced protein of 4,545 amino acids. Amo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2009